Cell Signaling Technology

PI3K/Akt 结合分子表

结合分子 结合作用 对于Akt 活性的影响 文献
α-Actinin 4 在Akt的转移和激活中必不可少 Positive (1)
Androgen Receptor (AR) 与Akt和Mdm2形成复合体,导致AR的降解 N/A (2)
APE 与Akt的激酶结构域结合 Positive (3)
APPL1 与Akt的激酶结构域结合 Positive (4)
Brk 与Akt结合限制它的活性 Negative (5)
cdc25A 与Akt和Raf1 形成复合体促进细胞生存 Positive (6)
cdc37 与Akt结合防止它被降解 Positive (7)
CTMP 与Akt的疏水基序结合,阻止它被活化 Negative (8)
eNOS eNOS的Ser113 和Ser614 位的磷酸化后不能再与Akt结合 N/A (9)
Ft1 与Akt结合增强它的激酶活性 Positive (10)
GRB10 与Akt的PH域结合,使之准备好被激活 Positive (11)
HSP27 在中性粒细胞中形成Akt/HSP27复合体是活化必须的 Positive (12)
ILK ILK 的磷酸化是其和Akt结合以及Akt Ser473磷酸化所需要的 Positive (13)
IRAK2 与Akt结合,促进NF-kB的活性 N/A (14)
JIP1 与Akt1 的PH域结合,抑制JNK 的激活 N/A (15)
p21 Cip1 B与Akt2 结合,导致它在核中的聚集并使细胞周期停滞 N/A (16)
Periplakin 与Akt的PH域结合,调节它的细胞内定位 N/A (17)
PIKE-A 与Akt结合并促进激酶活性 Positive (18)
PP2C A 结合并使Akt去磷酸化 Negative (19)
POSH B与POSH结合后,Akt减少MLK3-JNK的激活 N/A (20)
Prohibitin 2 与Akt C端结合 N/A (21)
Raf1 Akt结合并磷酸化Raf1 ,降低Raf1 的活性 N/A (22)
Smad3 胰岛素诱导Akt和Smad3的结合,阻止了Smad3的磷酸化和入核;TGF- β封闭了PKB 和Smad3的结合 N/A (23,24)
TCL1 与Akt的PH域结合,形成多聚体,增强Akt的活性 Positive (25,26)
TRB3 胰岛素介导的与Akt的结合并使Akt不能激活 Negative (27)

感谢安大略,多伦多,约克大学的Michael Scheid教授创建这个表格。


  1. Ding, Z. et al. (2006) A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc. Natl. Acad. Sci. U.S.A. 103, 15014–15019.
  2. Lin, H.K. et al. (2002) Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 21, 4037–4048.
  3. Anai, M. et al. (2005) A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J. Biol. Chem. 280, 18525–18535.
  4. Mitsuuchi, Y. et al. (1999) Identification of a chromosome 3p14.3-21.1 gene, APPL, encoding an adaptor molecule that interacts with the oncoprotein-serine/threonine kinase AKT2. Oncogene 18, 4891–4898.
  5. Zhang, P. et al. (2005) Regulated association of protein kinase B/Akt with breast tumor kinase. J. Biol. Chem. 280, 1982–1991.
  6. Fuhrmann, G. et al. (2001) Cdc25A phosphatase suppresses apoptosis induced by serum deprivation. Oncogene 20, 4542–4553.
  7. Miyata, Y. et al. (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol. Cell. Biol. 24, 4065–4074.
  8. Maira, S.M. et al. (2001) Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science 294, 374–380.
  9. Bauer, P.M. et al. (2003) Compensatory phosphorylation and protein-protein interactions revealed by loss of function and gain of function mutants of multiple serine phosphorylation sites in endothelial nitric-oxide synthase. J. Biol. Chem. 278, 14841–14849.
  10. Remy, I. et al. (2004) Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol. Cell. Biol. 24, 1493–1504.
  11. Jahn, T. et al. (2002) Role for the adaptor protein Grb10 in the activation of Akt. Mol. Cell. Biol. 22, 979–991.
  12. Rane, M.J. et al. (2003) Heat shock protein 27 controls apoptosis by regulating Akt activation. J. Biol. Chem. 278, 27828–27835.
  13. Persad, S. et al. (2001) Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J. Biol. Chem. 276, 27462–27469.
  14. Cenni, V. et al. (2003) Interleukin-1-receptor-associated kinase 2 (IRAK2)-mediated interleukin-1-dependent nuclear factor kappaB transactivation in Saos2 cells requires the Akt/protein kinase B kinase. Biochem. J. 376, 303–311.
  15. Kim, A.H. et al. (2002) Akt1 regulates a JNK scaffold during excitotoxic apoptosis. Neuron 35, 697–709.
  16. Héron-Milhavet, L. et al. (2006) Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol. Cell. Biol. 26, 8267–8280.
  17. van den Heuvel, A.P. et al. (2002) Binding of protein kinase B to the plakin family member periplakin. J. Cell. Sci. 115, 3957–3966.
  18. Ahn, J.Y. et al. (2004) PIKE (phosphatidylinositol 3-kinase enhancer)-A GTPase stimulates Akt activity and mediates cellular invasion. J. Biol. Chem. 279, 16441–16451.
  19. Pim, D. et al. (2005) Activation of the protein kinase B pathway by the HPV-16 E7 oncoprotein occurs through a mechanism involving interaction with PP2A. Oncogene 24, 7830–7838.
  20. Figueroa, C. et al. (2003) Akt2 negatively regulates assembly of the POSH-MLK-JNK signaling complex. J. Biol. Chem. 278, 47922–47927.
  21. Sun, L. et al. (2004) Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J. Cell. Sci. 117, 3021–3029.
  22. Reusch, H.P. et al. (2001) Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J. Biol. Chem. 276, 33630–33637.
  23. Conery, A.R. et al. (2004) Akt interacts directly with Smad3 to regulate the sensitivity to TGF-beta induced apoptosis. Nat. Cell Biol. 6, 366–372.
  24. Remy, I. et al. (2004) PKB/Akt modulates TGF-beta signalling through a direct interaction with Smad3. Nat. Cell Biol. 6, 358–365.
  25. Laine, J. et al. (2000) The protooncogene TCL1 is an Akt kinase coactivator. Mol. Cell 6, 395–407.
  26. Pekarsky, Y. et al. (2000) Tcl1 enhances Akt kinase activity and mediates its nuclear translocation. Proc. Natl. Acad. Sci. U.S.A. 97, 3028–3033.
  27. Du, K. et al. (2003) TRB3: a tribbles homolog that inhibits Akt/PKB activation by insulin in liver. Science 300, 1574–1577.

created September 2007

revised November 2010