Cell Signaling Technology

Product Pathways - Autophagy Signaling

Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb #5869

No. Size Price
5869S 100 µl ( 10 western blots ) ¥4,050.00 现货查询 购买询价 防伪查询
5869T 20 µl ( 2 western blots ) ¥1,500.00 现货查询 购买询价 防伪查询
5869 carrier free & custom formulation / quantityemail request
Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
W 1:1000 Human,Mouse, Endogenous 140-150 Rabbit IgG
IP 1:100

Species cross-reactivity is determined by western blot.

Applications Key: W=Western Blotting, IP=Immunoprecipitation,


Species predicted to react based on 100% sequence homology: Rat,

Specificity / Sensitivity

Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb detects endogenous levels of ULK1 only when phosphorylated at Ser555. Bands of unknown origin are detected between 90 and 100 kDa.

Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb 兔单抗能够检测内源性的仅Ser555发生磷酸化的ULK1。在90kDa和100kDa处,还可检测出两条未知来源的条带。

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser555 of human ULK1 protein.


Western Blotting

Western Blotting

Western blot analysis of extracts from MCF7 cells, untreated or treated with oligomycin #9996 (0.5 μM, 30 minutes), and C2C12 cells, untreated or treated with hydrogen peroxide (10 mM, 5 minutes), using Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb.

Western blot 分析MCF7细胞的细胞提取物,未处理或 oligomycin #9996 处理(0.5 μM, 30 分钟);C2C12细胞的细胞提取物,未处理或过氧化氢处理(10 mM, 5 分钟),使用抗体是 Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb 兔单抗。

Western Blotting

Western Blotting

Western blot analysis of extracts from MCF7 cells, untreated or treated with oligomycin #9996 (0.5 µM, 30 minutes), using Phosho-ULK1 (Ser555) (D1H4) Rabbit mAb (left). Phoshpo-specificty is demonstrated by pre-incubating the antibody with phosphorylated (middle) or non-phoshporylated peptides (right) against a region surrounding Ser555 of ULK1.

Western blot 分析MCF7细胞的细胞提取物,未处理或oligomycin #9996 (0.5 µM, 30 分钟)处理。使用抗体是Phosho-ULK1 (Ser555) (D1H4) Rabbit mAb 兔单抗(左图)。通过预孵育磷酸化的抗体(中图)或对应ULK1的Ser555周围残基的非磷酸化多肽(右图)验证磷酸化的特异性。

Western Blotting

Western Blotting

Western blot analysis of extracts from MCF7 cells, untreated (-) or treated with carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (100 μM, 2 hr; +), using Phospho-ULK1 (Ser555) (D1H4) Rabbit mAb (upper) or ULK1 (D8H5) Rabbit mAb #8054 (lower).


Two related serine/threonine kinases, UNC-51-like kinase -1 and -2 (ULK1, ULK2), were discovered as mammalian homologs of the C. elegans gene UNC-51 in which mutants exhibited abnormal axonal extension and growth (1-4). Both proteins are widely expressed and contain an amino-terminal kinase domain followed by a central proline/serine rich domain and a highly conserved carboxy-terminal domain. The roles of ULK1 and ULK2 in axon growth have been linked to studies showing that the kinases are localized to neuronal growth cones and are involved in endocytosis of critical growth factors such as NGF (5). Yeast two-hybrid studies found ULK1/2 associated with modulators of the endocytic pathway, SynGap, and syntenin (6). Structural similarity of ULK1/2 has also been recognized with the yeast autophagy protein Atg1/Apg1 (7). Knockdown experiments using siRNA demonstrated that ULK1 is essential for autophagy (8), a catabolic process for the degradation of bulk cytoplasmic contents (9,10). It appears that Atg1/ULK1 can act as a convergence point for multiple signals that control autophagy (11), and can bind to several autophagy-related (Atg) proteins, regulating phosphorylation states and protein trafficking (12-16).

UNC-51样激酶1和2(ULK1, ULK2),是两种相关丝氨酸/苏氨酸激酶,研究发现是秀丽隐杆线虫基因UNC-51的哺乳动物同源物,它的突变会导致轴突的异常延伸与生长(1-4)。两种蛋白广泛表达,并且在一个中央脯氨酸/丝氨酸富含区域,和一个高度保守的羧基末端区域的后面含有一个氨基末端激酶域。关于ULK1和ULK2在轴突生长中的作用,有关研究表明,这些激酶主要定位于神经生长锥中,并且参与临界生长因子的内吞作用,如NGF(5)。酵母双杂交试验研究发现,ULK1/2与内吞作用途径的调节器有关,如SynGAP 和 syntenin(6)。ULK1/2与酵母自噬蛋白Agt1/Apg1具有结构相似性(7)。使用siRNA的敲除实验证明了,ULK1对自噬是必不可少的,即自噬溶酶体对其包裹的细胞质内容物进行降解的一种分解代谢过程(8)。Atg1/ULK1能够作为控制通路的多重信号的聚焦点(11),并且能够与多种调节磷酸化状态和蛋白运输的自噬相关蛋白(Atg)相结合(12-16)。

Phosphorylation of ULK1 by AMPK at Ser555 is critical for starvation-induced autophagy, cell survival under conditions of low nutrients and energy, and mitochondiral homeostasis (17)


  1. Ogura, K. et al. (1994) Genes Dev 8, 2389-400.
  2. Kuroyanagi, H. et al. (1998) Genomics 51, 76-85.
  3. Yan, J. et al. (1998) Biochem Biophys Res Commun 246, 222-7.
  4. Yan, J. et al. (1999) Oncogene 18, 5850-9.
  5. Zhou, X. et al. (2007) Proc Natl Acad Sci USA 104, 5842-7.
  6. Tomoda, T. et al. (2004) Genes Dev 18, 541-58.
  7. Matsuura, A. et al. (1997) Gene 192, 245-50.
  8. Chan, E.Y. et al. (2007) J Biol Chem 282, 25464-74.
  9. Reggiori, F. and Klionsky, D.J. (2002) Eukaryot Cell 1, 11-21.
  10. Codogno, P. and Meijer, A.J. (2005) Cell Death Differ 12 Suppl 2, 1509-18.
  11. Stephan, J.S. and Herman, P.K. (2006) Autophagy 2, 146-8.
  12. Okazaki, N. et al. (2000) Brain Res Mol Brain Res 85, 1-12.
  13. Young, A.R. et al. (2006) J Cell Sci 119, 3888-900.
  14. Kamada, Y. et al. (2000) J Cell Biol 150, 1507-13.
  15. Lee, S.B. et al. (2007) EMBO Rep 8, 360-5.
  16. Hara, T. et al. (2008) J Cell Biol 181, 497-510.
  17. Egan, D.F. et al. (2011) Science 331, 456-61.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!


Companion Products

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0


我要参与评论 :