Cell Signaling Technology

Product Pathways - Chromatin Regulation / Epigenetics

Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb (Biotinylated) #4395

h3   H3K27   H3K27me3   histone  

No. Size Price
4395S 100 µl ( 10 western blots ) ¥3,986.00 现货查询 购买询价
4395 carrier free & custom formulation / quantityemail request
Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
W 1:1000 Human,Mouse,Rat,Monkey, Endogenous 17 Rabbit IgG

Species cross-reactivity is determined by western blot.

Applications Key: W=Western Blotting,


Species predicted to react based on 100% sequence homology: Xenopus, Zebrafish,

Specificity / Sensitivity

Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb (Biotinylated) detects endogenous levels of histone H3 only when tri-methylated on Lys27. The antibody does not cross-react with non-methylated, mono-methylated, or di-methylated Lys27. In addition, the antibody does not cross-react with mono-methylated, di-methylated, or tri-methylated histone H3 at Lys4, Lys9, Lys36 or Histone H4 at Lys20.

Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb (Biotinylated)检测仅在Lys27位点三甲基化的内源性histone H3。该抗体显示不能与Lys27位点未甲基化、单甲基化或双甲基化发生交叉反应。另外,该抗体不与Lys4、Lys9、Lys36位点甲基化、双甲基化或三甲基化的histone H3蛋白或Lys20位点的histone H4发生交叉反应。

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of histone H3 in which Lys27 is tri-methylated.

通过人工合成仅在lys27位点三甲基化histone H3蛋白氨基端相应的多肽片段去免疫动物从而制备出此单克隆抗体。


This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733.

Cell Signaling Technology 的抗体以最佳条件连接着biotin。该生物素抗体被期望与非连接Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb #9733一样能展示同一物种的交叉反应。

Western Blotting

Western Blotting

Western blot analysis of extracts from various cell lines using Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb (Biotinylated). Streptavidin-HRP #3999 was used for detection.

使用Tri-Methyl-Histone H3 (Lys27) (C36B11) Rabbit mAb 兔单抗(Biotinylated),免疫印迹(Western blot)分析不同细胞中Tri-Methyl-Histone H3 (Lys27)蛋白水平。Streptavidin-HRP #3999用于检测。


The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

核小体是由四种组蛋白(H2A、H2B、H3和H4)组成,它是染色质的主要构成模块。起初被认为作为一个DNA包装的静态支架,现在则显示组蛋白是动态蛋白,经历多种翻译后修饰的形式,包括乙酰化、磷酸化、甲基化和泛素化(1)。组蛋白甲基化对于该基因组的活化和未活化区域的形成有着主要决定作用,并且在发育期间对该基因组的正确规划起着关键作用(2,3)。histones H3 (Arg2、17、26)和H4 (Arg3)的精氨酸甲基化促进转录调控以及通过蛋白质精氨酸甲基转移酶(PRMTs)家族的介导,包括共激活因子PRMT1和CARM1 (PRMT4) (4)。相反,多种多样的组蛋白赖氨酸甲基转移酶已经被鉴定,除了这个之外其它的都包含一个保守的催化SET区域,这个起初被鉴定在Drosophila Su(var)3-9、zeste增强子和Trithorax蛋白。赖氨酸甲基化主要发生在histones H3 (Lys4、9、27、36、79)和H4 (Lys20),并且已经涉及到转录激活和沉默(4)。这些赖氨酸残基的甲基化协调染色质修饰酶的招募包括methyl-lysine结合模块例如chromodomains (HP1, PRC1)、PHD fingers (BPTF, ING2)、tudor domains (53BP1)和WD-40 domains (WDR5) (5-8)。组蛋白例如PADI4、LSD1、JMJD1、JMJD2和JHDM1的发现已经显示甲基化是一个可逆的表遗传标记物(9)。

  1. Peterson, C.L. and Laniel, M.A. (2004) Curr Biol 14, R546-51.
  2. Kubicek, S. et al. (2006) Ernst Schering Res Found Workshop , 1-27.
  3. Lin, W. and Dent, S.Y. (2006) Curr Opin Genet Dev 16, 137-42.
  4. Lee, D.Y. et al. (2005) Endocr Rev 26, 147-70.
  5. Daniel, J.A. et al. (2005) Cell Cycle 4, 919-26.
  6. Shi, X. et al. (2006) Nature 442, 96-9.
  7. Wysocka, J. et al. (2006) Nature 442, 86-90.
  8. Wysocka, J. et al. (2005) Cell 121, 859-72.
  9. Trojer, P. and Reinberg, D. (2006) Cell 125, 213-7.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!


Companion Products

For Research Use Only. Not For Use In Diagnostic Procedures.

U.S. Patent No. 5,675,063.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0


我要参与评论 :