Cell Signaling Technology

Product Pathways - Chromatin Regulation / Epigenetics

ASF1A (C6E10) Rabbit mAb #2990

No. Size Price
2990S 100 µl ( 10 western blots ) ¥3,250.00 现货查询 购买询价 防伪查询
2990 carrier free & custom formulation / quantityemail request
Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
W 1:1000 Human,Mouse,Monkey, Endogenous 20 Rabbit IgG
IP 1:50
IHC-P 1:200
IF-IC 1:100

Species cross-reactivity is determined by western blot.

Applications Key: W=Western Blotting, IP=Immunoprecipitation, IHC-P=Immunohistochemistry (Paraffin), IF-IC=Immunofluorescence (Immunocytochemistry),


Species predicted to react based on 100% sequence homology: Chicken, Bovine,

Specificity / Sensitivity

ASF1A (C6E10) Rabbit mAb detects endogenous levels of total ASF1A protein. The antibody does not cross-react with ASF1B protein.

ASF1A (C6E10) Rabbit mAb兔单抗能够检测内源性ASF1A总蛋白水平。该抗体不能与ASF1B蛋白发生相互作用。

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to the carboxy terminus of the human ASF1A protein.


IHC-P (paraffin)

IHC-P (paraffin)

Immunohistochemical analysis of paraffin-embedded human melanoma using ASF1A (C6E10) Rabbit mAb in the presence of control peptide (left) or antigen specific peptide (right).

使用ASF1A (C6E10) Rabbit mAb兔单抗,其分别与control peptide (左图)或抗原特异性肽段 (右图)孵育,免疫组化分析人源黑素瘤组织石蜡切片。

Western Blotting

Western Blotting

Western blot analysis of extracts from various cell lines using ASF1A (C6E10) Rabbit mAb.

使用ASF1A (C6E10) Rabbit mAb兔单抗,免疫印迹(Western blot)分析不同细胞中ASF1A蛋白水平。



Confocal immunofluorescent analysis of HeLa cells using ASF1A (C6E10) Rabbit mAb (green). Actin filaments have been labeled with DY-554 Phalloidin (red).

使用ASF1A (C6E10) Rabbit mAb兔单抗 (绿色)标记,共聚焦免疫荧光分析HeLa细胞。DY-554 phalloidin标记微丝蛋白(红色)。


ASF1 was first identified in S. cerevisiae based on its ability to de-repress transcriptional silencing when overexpressed (1). While only one gene exists in yeast and Drosophila, mammalian cells contain the two highly homologous ASF1A and ASF1B genes (2). ASF1A and ASF1B function as histone chaperones, delivering histone H3/H4 dimers to CAF-1 or HIRA histone deposition complexes to facilitate replication-coupled and replication-independent nucleosome assembly on DNA (2-5). Both ASF1A and ASF1B bind to CAF-1, but only ASF1A binds to HIRA (5). In addition to playing a role in DNA replication and gene silencing, ASF1 functions in DNA damage repair, genome stability and cellular senescence. Deletion of ASF1 in yeast and Drosophila confers sensitivity to various DNA damaging agents and inhibitors of DNA replication, increases genomic instability and sister chromatid exchange, and activates the DNA damage checkpoint (6-8). Depletion of both ASF1A and ASF1B in mammalian cells results in the accumulation of cells in S phase, increased phosphorylation of H2A.X, centrosome amplification and apoptosis (9,10). ASF1A is required for the formation of senescence-associated heterochromatin foci (SAHF), with overexpression of ASF1A inducing senescence in primary cells (4). Both ASF1A and ASF1B are phosphorylated in S phase by the Tousled-like kinases TLK1 and TLK2, and are dephosphorylated when TLK1 and TLK2 are inactivated by Chk1 kinase in response to replicative stress (11,12). The function of ASF1 phosphorylation is not yet understood.

ASF1蛋白首先在酿酒酵母(S.cerevisiae)中被鉴定,其基于在过表达时它能够解除阻遏转录沉默作用(1)。当在酵母和果蝇中仅存在ASF1基因时,哺乳动物细胞中包含两个高度同源的ASF1A和ASF1B基因(2)。ASF1A和ASF1B蛋白作为组蛋白伴侣的功能,它是将组蛋白H3/H4二聚体传递到CAF-1或HIRA组蛋白沉积复合物上,从而有助于DNA复制耦联和复制独立的核小体组装(2-5)。ASF1A和ASF1B蛋白都能结合到CAF-1,但仅有ASF1A结合到HIRA(5)。除了在DNA复制和基因沉默中起着重要作用,ASF1蛋白具有在DNA损伤修复、基因组的稳定和细胞内衰老的功能。在酵母和果蝇中ASF1基因的敲除可传递信号到不同的DNA损伤因子和DNA复制抑制因子、也可增加基因组的不稳定性和姊妹染色单体的交换、以及激活DNA破坏检查点(6-8)。在哺乳细胞中ASF1A和ASF1B基因敲除导致在S期的细胞堆积,这增加了H2A.X的磷酸化、中心体的复制和细胞凋亡(9,10)。ASF1A蛋白对于senescence-associated heterochromatin foci (SAHF)的形成是需要的,这就使ASF1A蛋白的过表达能诱导原代细胞的衰老(4)。ASF1A和ASF1B蛋白在S期是通过Tousled-like kinases TLK1 and TLK2被磷酸化,而在复制应激下被去磷酸化是通过Chk1 kinase使TLK1和TLK2的失活(11,12)。ASF1蛋白磷酸化的功能尚不清楚。

  1. Singer, M.S. et al. (1998) Genetics 150, 613-632.
  2. Mousson, F. et al. (2007) Chromosoma 116, 79-93.
  3. Tang, Y. et al. (2006) Nat. Struct. Mol. Biol. 13, 921-929.
  4. Zhang, R. et al. (2005) Dev. Cell. 8, 19-30.
  5. Daganzo, S.M. et al. (2003) Curr. Biol. 13, 2148-2158.
  6. Ramey, C.J. et al. (2004) Mol. Cell. Biol. 24, 10313-10327.
  7. Prado, F. et al. (2004) EMBO Rep. 5, 497-502.
  8. Tyler, J.K. et al. (1999) Nature 402, 555-560.
  9. Sanematsu, F. et al. (2006) J. Biol. Chem. 281, 13817-13827.
  10. Groth, A. et al. (2005) Mol. Cell. 17, 301-311.
  11. Silljé, H.H. and Nigg, E.A. (2001) Curr. Biol. 11, 1068-1073.
  12. Carrera, P. et al. (2003) Genes Dev. 17, 2578-2590.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!


Companion Products

For Research Use Only. Not For Use In Diagnostic Procedures.

U.S. Patent No. 5,675,063.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0


我要参与评论 :