Cell Signaling Technology

Product Pathways - Ca / cAMP / Lipid Signaling

Annexin A2 (D11G2) Rabbit mAb (PE Conjugate) #15161

Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
F 1:50 Human,Mouse,Rat,Monkey,Bovine,Pig, Endogenous Rabbit IgG

Species cross-reactivity is determined by western blot.

Applications Key: F=Flow Cytometry,


Species predicted to react based on 100% sequence homology: Dog, Horse,

Specificity / Sensitivity

Annexin A2 (D11G2) Rabbit mAb (PE Conjugate) recognizes endogenous levels of total annexin A2 protein. This antibody is not known or predicted to cross-react with other annexin family members.

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Phe307 of human annexin A2 protein.


This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Annexin A2 (D11G2) Rabbit mAb #8235.

Flow Cytometry

Flow Cytometry

Flow cytometric analysis of HL-60 cells (blue) and K-562 cells (green) using Annexin A2 (D11G2) Rabbit mAb (PE Conjugate).


Annexin A2 (ANXA2), also known as lipocortin II or calpactin-1 heavy chain, is a 36 kDa member of the annexin superfamily that binds phospholipids and other proteins in a calcium-dependent manner via annexin repeats (1). Annexin A2 contains four such repeats through which it mediates protein-protein and protein-lipid interactions (1-4). It forms a constitutive heterotetramer with S100A10, acting as a bridge between the actin cytoskeleton, plasma membrane, and endocytotic vesicle machinery (5-7). Originally identified as a protein inhibitor of phospholipase A2, annexin A2 has subsequently been shown to interact with an array of protein and non-protein partners, including F-actin, spectrin, SNARE complexes, RNA, and virus particles (4,6,8,9). Annexin A2 has also been shown to have receptor-like activity and is detected on the surface of macrophages and vascular endothelial cells where it mediates macrophage activation and Factor Xa signaling, respectively (10-13). Upregulation of annexin A2 at the cell surface is thought to be modulated by phosphorylation at Tyr23 by Src (14-18). Interestingly, phosphorylation at Tyr23 has recently been shown to be required for cell surface expression of annexin A2 where it mediates motility, invasiveness, and overall metastatic potential of certain pancreatic cancer cells (19,20). Annexin A2 has also been shown to be heavily phosphorylated on serine residues in response to PKC activation via a pleiotropic mechanism (21-23). For a complete list of curated phosphorylation sites on annexin A2, please see PhosphoSitePlus® at www.phosphosite.org.

  1. Barton, G.J. et al. (1991) Eur J Biochem 198, 749-60.
  2. Gerke, V. and Weber, K. (1985) EMBO J 4, 2917-20.
  3. Glenney, J.R. and Tack, B.F. (1985) Proc Natl Acad Sci USA 82, 7884-8.
  4. Gerke, V. and Weber, K. (1984) EMBO J 3, 227-33.
  5. Illien, F. et al. (2010) Biochim Biophys Acta 1798, 1790-6.
  6. Umbrecht-Jenck, E. et al. (2010) Traffic 11, 958-71.
  7. Jung, M.J. et al. (2010) Exp Cell Res 316, 1234-40.
  8. Filipenko, N.R. et al. (2004) J Biol Chem 279, 8723-31.
  9. Wright, J.F. et al. (1994) Biochem Biophys Res Commun 198, 983-9.
  10. Bhattacharjee, G. et al. (2008) Circ Res 102, 457-64.
  11. Pizzo, S.V. (2008) Circ Res 102, 389-91.
  12. Swisher, J.F. et al. (2007) J Leukoc Biol 82, 1174-84.
  13. Deora, A.B. et al. (2004) J Biol Chem 279, 43411-8.
  14. Huang, K.S. et al. (1986) Cell 46, 191-9.
  15. Erikson, E. et al. (1984) Mol Cell Biol 4, 77-85.
  16. Glenney, J.R. (1985) FEBS Lett 192, 79-82.
  17. Morel, E. and Gruenberg, J. (2009) J Biol Chem 284, 1604-11.
  18. de Graauw, M. et al. (2008) Mol Cell Biol 28, 1029-40.
  19. Nedjadi, T. et al. (2009) Br J Cancer 101, 1145-54.
  20. Zheng, L. et al. (2011) PLoS One 6, e19390.
  21. Gould, K.L. et al. (1986) Mol Cell Biol 6, 2738-44.
  22. Luo, W. et al. (2008) Mol Carcinog 47, 934-46.
  23. He, K.L. et al. (2011) J Biol Chem 286, 15428-39.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!


Companion Products

For Research Use Only. Not For Use In Diagnostic Procedures.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

PhosphoSitePlus is a trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0


我要参与评论 :