Cell Signaling Technology

Product Pathways - NF-kB Signaling

Phospho-IKKα/β (Ser176/180) (16A6) Rabbit mAb (PE Conjugate) #14938

No. Size Price
14938S 100 µl ( 50 tests ) ¥3,986.00 现货查询 购买询价
14938 carrier free & custom formulation / quantityemail request
Applications Dilution Species-Reactivity Sensitivity MW (kDa) Isotype
F 1:50 Human,Mouse,Rat,Monkey, Endogenous Rabbit IgG

Species cross-reactivity is determined by western blot.

Applications Key: F=Flow Cytometry,

Homology

Species predicted to react based on 100% sequence homology: Bovine,

Specificity / Sensitivity

Phospho-IKKα/β (Ser176/180) (16A6) Rabbit mAb (PE Conjugate) detects IKKα only when phosphorylated at Ser176/180 and IKKβ only when phosphorylated at Ser177/181.

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Ser176/180 of human IKKα protein.

Description

This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-IKKα/β (Ser176/180) (16A6) Rabbit mAb #2697.

Flow Cytometry

Flow Cytometry

Flow cytometric analysis of THP-1 cells, untreated (blue) or treated with TPA #4174 (80 nM, overnight followed by a 24 hr rest) and LPS (1 μg/ml, 15 min; green), using Phospho-IKK-α/β (Ser176/Ser180) (16A6) Rabbit mAb (PE Conjugate).

Background

The NF-κB/Rel transcription factors are present in the cytosol in an inactive state, complexed with the inhibitory IκB proteins (1-3). Most agents that activate NF-κB do so through a common pathway based on phosphorylation-induced, proteasome-mediated degradation of IκB (3-7). The key regulatory step in this pathway involves activation of a high molecular weight IκB kinase (IKK) complex whose catalysis is generally carried out by three tightly associated IKK subunits. IKKα and IKKβ serve as the catalytic subunits of the kinase and IKKγ serves as the regulatory subunit (8,9). Activation of IKK depends upon phosphorylation at Ser177 and Ser181 in the activation loop of IKKβ (Ser176 and Ser180 in IKKα), which causes conformational changes, resulting in kinase activation (10-13).

  1. Baeuerle, P.A. and Baltimore, D. (1988) Science 242, 540-6.
  2. Beg, A.A. and Baldwin, A.S. (1993) Genes Dev 7, 2064-70.
  3. Finco, T.S. et al. (1994) Proc Natl Acad Sci USA 91, 11884-8.
  4. Brown, K. et al. (1995) Science 267, 1485-8.
  5. Brockman, J.A. et al. (1995) Mol Cell Biol 15, 2809-18.
  6. Traenckner, E.B. et al. (1995) EMBO J 14, 2876-83.
  7. Chen, Z.J. et al. (1996) Cell 84, 853-62.
  8. Zandi, E. et al. (1997) Cell 91, 243-52.
  9. Karin, M. (1999) Oncogene 18, 6867-74.
  10. DiDonato, J.A. et al. (1997) Nature 388, 548-54.
  11. Mercurio, F. et al. (1997) Science 278, 860-6.
  12. Johnson, L.N. et al. (1996) Cell 85, 149-58.
  13. Delhase, M. et al. (1999) Science 284, 309-13.

Application References

Have you published research involving the use of our products? If so we'd love to hear about it. Please let us know!

Protocols

Companion Products


For Research Use Only. Not For Use In Diagnostic Procedures.

U.S. Patent No. 5,675,063.

Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.

Cell Signaling Technology® is a trademark of Cell Signaling Technology, Inc.

用户评论 --- 共 0

该产品暂无评论!

我要参与评论 :

如要参与评论请先登录网站

还没有网站账户?去注册一下吧

Products

 

Applications